34 Déficits immunitaires congénitaux

1 Définition

Déficit immunitaire = toute situation du système immunitaire fragilisant l'organisme de façon passagère ou durable et favorisant la survenue d'infections graves. Il s'agit donc de syndromes dus à une anomalie de l'une ou l'autre des lignées cellulaires impliquées (lymphocytes T, B, PN, macro) dans la réponse immune. Ils peuvent être acquis ou congénitaux.

2 Circonstances cliniques de découverte

Notion d'un déficit connu ou suspecté dans la famille ou la fratrie.

⇒ Lorsque le déficit est bien caractérisé, le diagnostic anténatal est souvent possible.

Les signes évocateurs sont dominés par l'infection et les troubles digestifs.

- ⇒ <u>Infection ++ :</u> localisée ou généralisée, à répétition, de type bactérien, viral, mycosique ou parasitaire.
- ⇒ Troubles digestifs : dominés par la diarrhée chronique sévère, précoce, rebelle aux traitements classiques et/ou par une cassure de la courbe de poids.

Signes apparemment non évocateurs :

- ⇒ Eczéma et thrombopénie du nouveau-né, hypocalcémie et cardiopathies congénitales,
- ⇒ Manifestations auto-immunes ou d'hypersensibilité (arthrite, cytopénie, glomérulonéphrite),
- ⇒ Allergies et accidents médicamenteux.

3 Exploration de l'immunité

3.1 Etude de l'immunité non spécifique

Numération des polynucléaires : on parle de granulopénie lorsqu'il existe moins de 1000 granulocytes/mm3.

Etude fonctions des PN lorsque nombre normal ou augmenté : chimiotactisme, phagocytose et étude de la fonction bactéricide

Dosage du complément total et fractions spécifiques.

3.2 Etude de l'immunité spécifique (responsable de la mémoire immunitaire)

3.2.1 Etude de l'immunité cellulaire

Cellules: Lymphocytes T et les cellules NK.

Numération des lymphocytes totaux d'après la numération sanguine : Taux des lymphocytes T : 75 %.

Exploration lymphocytes T:

- ⇒ Examen simple = réaction d'hypersensibilité retardée, avec la cuti à la tuberculine lorsque malade a eu le B.C.G.
- ⇒ On peut aussi étudier la fonction des lymphocytes T en les stimulant par différents mitogènes ou antigènes.
- ⇒ Cytométrie de Flux : Phénotypage cellulaire (défaut de certains marqueurs membranaires, défauts d'expression)

3.2.2 Explorations de l'immunité humorale

Cellules: Lymphocytes B.

Numération des lymphocytes B (25 % des lymphocytes). Dosage pondéral des immunoglobulines : IgD, IgM, IgG, IgA et IgE. Dosage des anticorps après vaccinations et de groupes sanguins.

4 Pathologies

4.1 Déficits de l'immunité non spécifique

Importance : 10 % des déficits immunitaires héréditaires

4.1.1 Anomalies fonctionnelles des granulocytes

La granulomatose septique chronique familiale

<u>Transmission</u>: Récessive liée au sexe ou encore autosomique récessive → exemple

typique.

Les femmes sont vectrices et généralement asymptomatiques.

Mécanisme : La phagocytose est normale mais le métabolisme oxydatif est nul. Les infections apparaissent souvent au cours de la première année,

siégeant au niveau de la **peau**, **des ganglions**, **de la sphère ORL** ou systémiques. Il s'agit d'infections **bactériennes** (en particulier de staphylocoque) ou **fongiques**

(candida et aspergillus).

Evolution : Cette affection évolue avec formation de granulome dans les différents viscères.

Biologie: Il existe une hyperleucocytose avec augmentation des immunoglobulines.

Le diagnostic repose sur le test de réduction du nitrobleu de tétrazolium et sur le test de chémiluminescence.

Le diagnostic anténatal est possible

<u>Traitement</u>: repose sur une **antibiothérapie** adaptée des surinfections. Certains proposent une

antibiothérapie systématique.

Pronostic: habituellement défavorable..

Autres

Anomalies qualitatives des phagocytes touchant :

- **-Chimiotactisme et non bactéricidie :** Syndrome de Buckley, Syndrome de Chediak Higashi, Syndrome du leucocyte paresseux
- -Adhérence leucocytaire : LAD ou déficit d'adhésion leucocytaire.

Agranulocytose (déficit quantitatif)

Déficits du complément

- ⇒ Surtout responsables de manifestations auto-immunes et Méningites à Méningocoques
- ⇒ Déficits en C3, C5, C6, C7 et même C8.
- ⇒ Déficits en Protéines Régulatrices

4.1.2 Déficits de l'immunité humorale

Importance: 70 % des déficits immunitaires héréditaires dont la majorité sont des déficits en IgA

Agammaglobulinémie liée au sexe (Bruton)

Mutation de la protéine **Bruton Tyrosine Kinase** sur le gène BTK (Xq21-22). On a un **déficit en XLA**.

On n'a pas d'immunoglobulines, pas de plasmocytes, pas de lymphocytes B circulants.

Le nombre de lymphocytes pré-B dans la moelle est normal.

Les lymphocytes T ne sont pas affectés.

On observe un blocage de la maturation des cellules pré-B en lymphocytes B matures dans la moelle osseuse d'où l'absence de lymphocytes B circulants.

Clinique: Les infections de la sphère ORL, pulmonaires, digestives surviennent après le

6ème mois.

Evolution: se fait vers la dilatation des bronches et l'insuffisance respiratoire chronique.

Transmission : Cette affection se transmet selon un mode récessif lié au sexe.

Diagnostic : Le diagnostic repose sur l'absence de lymphocytes B et d'immunoglobulines

sériques.

Le diagnostic anténatal est possible (gène btk).

<u>Traitement</u>: substitutif apporte des lg intraveineuses à la dose de 400 mg/kg afin de maintenir

un taux résiduel d'IgG > 7-8 g/l

(soit tous les 15 à 21 jours).

Le ttt des surinfections bronchiques et la kinésithérapie respiratoire sont essentiels.

Déficits dissociés de l'immunité humorale

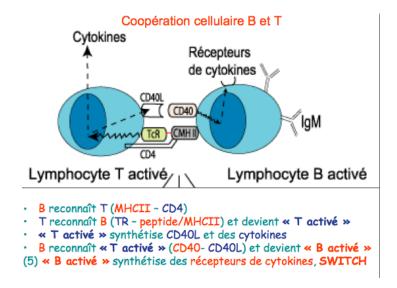
Déficit en IgM sérique

Déficit en IgA:

Importance: Ce déficit est fréquent (1/700)

Clinique: Les manifestations ne sont pas univoques: infections ORL et bronchiques, allergies diverses, maladies auto-immunes (lupus, intolérance au gluten ...).

Déficit en IgG et IgA AVEC HYPER IGM


<u>Mécanisme</u>: est en fait une **maladie T** puisqu'il s'agit d'un **défaut d'expression** par les lymphocytes T du ligand de CD40 jouant un rôle fondamental dans le phénomène de " switch " ou de commutation isotypique.

Transmission : liée à l'X ou autosomique récessive

Clinique: infections opportunistes (pneumocystose et cryptosporidiose).

On a absence de lymphocytes B mémoires et absence de centres germinaux.

On a une hyperimmunoglobulinémie à IgM.

Hypogammaglobulinémie transitoire de la première enfance

<u>Clinique</u>: Nourrissons avec infections ORL ou bronchiques après 6ème mois de vie quand IgG maternelles ont disparu.

Biologie: Le taux des immunoglobulines est diminué mais le taux des lymphocytes B est normal.

Traitement : Les perfusions d'immunoglobulines sont nécessaires au cours d'infections.

Hypogammaglobulinémie à expression variable

<u>Biologie</u>: Ce groupe est très hétérogène, caractérisé par une hypogammaglobulinémie avec présence de lymphocytes B.

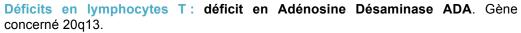
Clinique: Le tableau est variable d'un malade à l'autre, dominé par des infections bactériennes et des manifestations inflammatoires chroniques (du tube digestif, infiltrats pulmonaires, polyadénopathie, hépatomégalie).

Mécanisme : Il est vraisemblable qu'un déficit cellulaire soit sous-jacent.

4.1.3 Déficits touchant principalement les lymphocytes T

Importance : 20 % des déficits immunitaires héréditaires

Déficits de l'immunité cellulaire


Syndrome de Di George : embryopathie. Atteinte du q11 du X22.

On a absence de para-thyroide et de l'épithélium thymique.

Entraine des malformation du cœur et de la face.

On a des Immunoglobulines normales et un déficit variable en lymphocytes T.

<u>Traitement</u>: allogreffe, hormones thymiques et greffes de cellules thymiques.

Entraine une alymphocytose ou lymphopénie.

Enzyme dans le cycle des nucléotides purines : déficit entraîne l'accumulation de désoxyadénosine et augmentation de dATP (x100) qui inhibe la synthèse des autres dNTPs

Traitement: Polyéthylène glycol-ADA (PEG-ADA), greffe de MO, et Thérapie génique

Déficit en Lymphocytes T & Natural killers NK <u>SCID</u> = Severe Combined Immunodeficiency. Déficit en protéine ZAP70 (2q12) = Zeta chain associated protein 70.

Maladie autosomale récessive qui entraine un défaut de lymphocytes T et de cellules NK. Les lymphocytes T périphériques expriment le TCR et le CD4 mais pas le CD8.

On a un **défaut de différentiation** intrathymique des lymphocytes T CD8+ et un défaut dans la signalisation des lymphocytes T CD4+ matures.

Déficit en Lymphocytes T & Natural killers <u>SCID-X1</u>: défaut de la chaine gamma des récepteurs aux cytokines. Gène IL2RG (Xq13). C'est une maladie liée à l'X dans plus de 50% des cas , aussi appelée maladie des « Enfants-Bulle ».

On n'a pas de thymocytes, pas de lymphocytes T et pas de NK.

Les lymphocytes B sont présents en nombre élevées mais ils sont peu fonctionnels.

Traitement : greffe de moelle osseuse et thérapie génique (mais 2 leucémies sur 9 intégrations).

Déficit en Lymphocytes T et NK : défaut de la protéine Janus Kinase 3 JAK3, gène JAK3 (19p13).

Maladie autosomale récessive.

On n'a pas de thymocytes, pas de lymphocytes T et pas de NK.

Les lymphocytes B sont en nombre élevés mais peu fonctionnels.

Défaut d'expression des molécules de classe II d'histocompatibilité : se révèle vers 2 à 3 ans par une diarrhée chronique et une infection virale du groupe herpès.

C'est le syndrome des lymphocytes nus.

Maladie autosomale récessive.

Déficits immunitaires mixtes affectant l'immunité humorale et cellulaire

Déficits combinés sévères (DICS) :

<u>Clinique</u>: Manifestations infectieuses, surtout de nature opportunistes, surviennent à partir du 2è ou 3ème mois : ORL, pulmonaires, digestives avec hypotrophie et cassure de la courbe staturo-pondérale.

<u>Biologie</u>: Il n'existe pas de lymphocytes T (parfois présence de lymphocytes T d'origine maternelle) ; les lymphocytes B sont parfois présents.

Le taux des immunoglobulines G est ininterprétable au cours du premier mois de la vie.

Le diagnostic anténatal est possible.

Traitement: Seule la **transplantation médullaire** permet la guérison dans 75 % des cas.

Déficits immunitaires mixtes associés à d'autres anomalies

- Ataxie-télangiectasie à transmission AR (gène ATM identifié en juin 1995 en 11q22.23),
- Syndrome de Wiskott-Aldrich (maladie génétique marquée par une perturbation des plaquettes et des lymphocytes) lié à l'X (gène identifié en août 1994),
- Candidose chronique cutanéo-muqueuse.

5 Complications

5.1 Infections

DIC humoraux ou du système du complément :

- ⇒ Infections à germes encapsulés (S. Pneumoniae, H. Influenzae, P. Aeruginosa, Mycoplasme…)
- ⇒ Infections à Entérovirus ou Parasites (Giardia) → + rarement

DIC cellulaires à LT :

⇒ Infections opportunistes mycobactériennes, virales, parasitaires ou fongiques

DIC de la phagocytose :

⇒ Infections Chroniques à S.Aureus et Klebsiella Pneumoniae

Localisation : Le plus souvent Bronchopulmonaires, sinusiennes, parfois ostéoarticulaires, cutanées ou méningées

5.2 Manifestations néoplasiques

Syndromes lympho-prolifératifs, parfois cancer solide Lymphomes non hodgkiniens

5.3 Complications ostéo-articulaires

Arthrites infectieuses
Polyarthrites chroniques aseptiques
Complications osseuses infectieuses rares
Lésions osseuses spécifiques de certains déficits

5.4 Maladies auto-immunes

Surtout pour DIC humoraux ou du complément

6 Traitement

6.1 Traitement des DIC humoraux

Ig en IV: TEGELINE®, ENDOBULINE®, SANDOGLOBULINE®, OCTAGAM®

Traitement des agammaglobulinémies, hypogammaglobulinémie, déficits séléctifs compliqués d'infections

Cytokines: IL2 ou IL10 couplés à des PEG (surtout dans DICS)

6.2 Traitement des DIC cellulaires ou combinés

- ⇒ Greffe allogénique de moelle osseuse.
- ⇒ Greffe de MO familiale in utero (16-18 semaines de gestation).
- ⇒ Greffe de Thymus pré et postnatale pour Syndrome de Di Georges.
- ⇒ Thérapie cellulaire
- ⇒ Immunomodulation par CK (IL 2)

6.3 Traitement des anomalies des phagocytes

- ⇒ Transfusion de PNN et facteurs de croissance (G-CSF = GRANOCYTE®) pour certaines neutropénies congénitales
- ⇒ Allogreffe de MO (déficit en ADA et GSC)
- ⇒ Administration d'IFN gamma IMUKIN® dans GSC
- ⇒ Thérapie cellulaire

6.4 Traitement du Déficit en Complément

- ⇒ Pas de traitement spécifique des déficits héréditaire en composé du complément en dehors du déficit en C1 inh
- ⇒ **Traitement de la crise d'œdème angioneurotique :** Corticoïdes + Antifibrinolytique + androgène DANATROL®, Inhibiteur purifié
- ⇒ Traitement préventif : DANATROL® favorise synthèse du C1 Inh
- ⇒ Avant intervention sphère ORL : perf de C1 inh ou DANATROL® + cide epsilon